Bayesian Classi ation and Feature Sele tion from Finite Data Sets
نویسندگان
چکیده
منابع مشابه
Bayesian Neural Networks for Industrial Appli
Aki Vehtari and Jouko Lampinen Laboratory of Computational Engineering, Helsinki University of Te hnology P.O.Box 9400, FIN-02015 HUT, FINLAND SMCia/99 1999 IEEE Midnight-Sun Workshop on Soft Computing Methods in Industrial Appli ations Kuusamo, Finland, June 16 18, 1999 Abstra t We demonstrate the advantages of using Bayesian neural networks in regression, inverse and lassi ation problems, whi...
متن کاملBayesian Neural Networks for Industrial Appli ations
Abstra t We demonstrate the advantages of using Bayesian neural networks in regression, inverse and lassi ation problems, whi h are ommon in industrial appli ations. The Bayesian approa h provides onsistent way to do inferen e by ombining the eviden e from data to prior knowledge from the problem. A pra ti al problem with neural networks is to sele t the orre t omplexity for the model, i.e., th...
متن کاملLearning Content Selection Rules for Generating Object Descriptions in Dialogue
A fundamental requirement of any task-oriented dialogue system is the ability to generate obje t des riptions that refer to obje ts in the task domain. The subproblem of ontent sele tion for obje t des riptions in task-oriented dialogue has been the fo us of mu h previous work and a large number of models have been proposed. In this paper, we use the annotated o onut orpus of task-oriented desi...
متن کاملÀùññò Áááòøø¬ Blockin Blockinøøóò Úö×ù× Üôöö×××óò Ðð××׬ Blockin Blockinøøóò Úúú Òò Óò Ð ×ýñññøöý
We demonstrate a dual usage of quanti ed fa ial asymmetry for (1) human identi ation under expression variations and (2) expression lassi ation a ross di erent human subje ts. Our experiments show the e e tiveness of using statisti al bagging and feature subspa e sele tion BEFORE applying lassi ers su h as Linear Dis riminant Analysis. This prepro essing allows the same type but di erent dimens...
متن کاملInvestigating Semantic Knowledge for Text Learning
ABSTRACT Re ent work has made mu h of using semanti knowledge, derived in parti ular from domain ontologies, for improving text learning tasks. Semanti knowledge is assumed to apture more in-depth knowledge of the text domain in omparison with onventional statisti s-based methods that an only rely on more surfa e vo abulary-spe i hara teristi s of a data set. Therefore, using semanti knowledge ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000